\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis

The Cantor Set

The Cantor set is important for understanding Topology (open and closed sets) and measure.

Cantor set

Let \( C_0 \) be the closed interval \( [0, 1] \) and define \( C_1 \) to be the set that results when the open middle third is removed:

[\[ C_1 = \; C_0 \setminus \; ? = \;\; ?\; \cup \; ?  \]]

This process continued gives us the Cantor set:

\[ C = \bigcap_{n=0}^{\infty} C_n \]
Or alternatively:
[\[ C = [0,1] \setminus \big( (\frac{1}{3},\frac{2}{3}) \; \cup \; (?,\,?) \; \cup \;  (?,\,?) \; \cup \; ...\big) \] ]


Properties of the Cantor set

Below are some properties of the Cantor set, with explanations on the reverse side.

The cantor set...

  • has [zero/finite/infinite] measure
  • is [countably/uncountably] infinite
  • has dimension of [...]
  • is [open/closed/neither/both]
  • is [compact/not compact]
  • is [perfect/not perfect]
  • is [...] dense