\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Analysis
Heine-Borel Theorem
Heine-Borel Theorem for \( \mathbb{R} \)
A set \( K \subset \mathbb{R} \) is compact iff it is
closed and bounded.
If you have forgotten some of the formulations of compactness, here is a recap of one:
Compactness
A set \( K \subseteq \mathbb{R} \) is compact iff every
sequence in \( K \) has a subsequence that converges to a limit that is also in
\( K \).
Heine-Borel Theorem, proof
Below is a copy of Abbott's proof:
Source
Abbott, p84
-->