\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \)
Math and science::INF ML AI

Belief networks: independence examples




1 a) Marginalizing over \( C \)  makes \( A \) and \( B \) [...]

1 b) Conditioning on \( C \) makes A and B [...]


2. Conditioning on \(  D \), a descendent of a collider \( C \) makes \( A \) and \( B \)  [...]


3 a) \( p(A, B, C) = \) [...]

3 b) Marginalizing over \( C \) makes \( A \) and \( B \) [...]

3 c) Conditioning on \( C \) makes \( A \) and \( B \)  [...]

Finally, these following graphs all express the same conditional independence assumptions.