\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::INF ML AI
Sum of Gaussian random variables
Sum of Gaussian random variables
Let \( X : \Omega \to \mathbb{R} \) and \( Y : \Omega \to \mathbb{R} \) be
two random variables each with a Gaussian distribution:
- \( X \sim \mathcal{N}(\mu_x, \sigma_x^2) \)
- \( Y \sim \mathcal{N}(\mu_y, \sigma_y^2) \)
Then the random variable \( Z = X + Y \) has a Gaussian distribution:
\( Z \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2) \)
Follow-up. \( Z = XY \) [does/n't] have a Gaussian distribution?
Can you remember the geometric intuition/proof?