\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Topology
Metric space
Metric
A metric \( d \) on a set \( X \) is a function [ \( d : \text{what} \to \text{ to what?} \)] with the following three properties:
- What is this called?
- \( d(x, y) = 0 \iff x = y, \text{ for all } x, y \in X \)
- Triangle inequality
- [...]
- Symmetry
- \( d(x, y) = d(y, x), \text{ for all } x, y \in X \)
A metric space is a set together with a metric on it, or more formally,
a pair \( (X, d) \) where \( X \) is a set and \( d \) is a metric on \( X \).