\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \)
Math and science::Topology

Subbasis

Let \( X \) be a set. A subbasis for a topology on \( X \) is a collection of subsets of \( X \) whose union equals \( X \).

Let \( \mathcal{S} \) be a subbasis for a topology on \( X \). The set of all unions of finite intersections of elements of \( \mathcal{S} \) is a topolgy on \( X \). This topology is said to be generated by the subbasis \( \mathcal{S} \).

It can be proved that the generated set forms a valid topology.


Basis vs subbasis

A subbasis is an even more lightweight description of a topology compared to a basis. A subbasis can generate a basis for the same topology: the collection of all finite intersections of subbasis elements forms a basis.

Context