\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\)
Math and science::Topology
Subbasis
Let \( X \) be a set. A subbasis for a topology on \( X \) is a collection
of subsets of \( X \) whose union equals \( X \).
Let \( \mathcal{S} \) be a subbasis for a topology on \( X \). The
set of all [something of something of something] is
a topolgy on \( X \). This topology is said to be generated by the
subbasis \( \mathcal{S} \).
It can be proved that the generated set forms a valid topology.