\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \)
Math and science::Algebra::Aluffi

Quotient groups. From Cosets.

This card connects cosets and quotients.

Coset

For any subgroup \( H \) of \( G \), we can form an equivalence relation:

\[ x \sim_{R} y \iff xy^{-1} \in H \]

The partition created by this equivalence relation is the set of right cosets.

Or a (possibly different) equivalence relation:

\[ x \sim_{L} y \iff x^{-1}y \in H \]

The partition created by this equivalence relation is the set of left cosets.

Property

The equivalence relation:

\[ x \sim_{R} y \iff xy^{-1} \in H \]

Has the following important property:

[\[ \begin{equation} \forall g \in G, \quad x \sim_{R} y \implies \quad ? \tag{1} \end{equation} \]]

A similar argument shows that the equivalence relation:

\[ x \sim_{L} y \iff x^{-1}y \in H \]

Has the property:

[\[ \begin{equation} \forall g \in G, \quad x \sim_{L} y \implies \quad ? \tag{2} \end{equation} \]]

How are these properties related to quotient groups?